LETTERS TO THE EDITOR

SYNTHESIS AND REACTIONS OF DERIVATIVES OF ISOINDOLO[2,1-b]-[2,4]BENZODIAZEPINE

A. K. Tyltin, N. A. Lysik, A. M. Demchenko, and V. A. Kovtunenko

UDC 547.892'759.3.07

The isoindolo[2,1-b][2,4]benzodiazepine system has been little studied, although other combinations of isoindole and benzodiazepine fragments have been studied in greater detail [1]. Among them, compounds have been found which possess anticonvulsive, sedative, and tranquilizing actions [2-4].

We have shown that the hydrochloride of 2-(o-cyanobenzyl)-1-imino-3H-isoindole (I), mp 246-248°C (from water), obtained by condensing 3-amino-1H-isoindole and o-chloromethyl-benzonitrile in methanol, when it is treated with two equivalents of sodium ethanolate followed by boiling in absolute ethanol for 5 h, undergoes a peculiar molecular cyclization with the formation of the previously unknown 5-imino-5,13-dihydro-11H-isoindolo[2,1-b][2,4]benzo-diazepine (IIa); yield 68%; mp 159-160°C (from nitromethane).

II a R=H; b R=COCH3; c R=CONHC6H5; d R=CSNHC6H5

IR spectrum of (IIa) (KBr), cm^{-1} : 1635 and 1680 (C=N); 3300 and 3173 (NH). PMR spectrum (from TMS in DMSO), ppm: s, 4.50 (2 H, CH₂); s, 5.10 (2 H, CH₂); s, 6.25 (1 H, NH); m, 7.16-7.55 (8 H, aromatic protons).

The hydrogen atom in the imino group of compound (IIa) possesses a definite mobility. Thus, reaction with ketene formed the N-acetyl derivative (IIb), mp $218-220^{\circ}\text{C}$ (from propan-2-ol); and reaction with phenyl isocyanate and with phenyl isothiocyanate led, respectively, to the phenylurea (IIc), mp $255-256^{\circ}\text{C}$ (from methanol), and the phenylthiourea (IId), mp $168-169^{\circ}\text{C}$ (from benzene).

The structures of the compounds synthesized were deduced on the basis of their IR and PMR spectra. The results of their elementary analysis corresponded to the calculated figures.

LITERATURE CITED

- 1. F. S. Babichev and V. A. Kovtunenko, The Chemistry of Isoindole [in Russian], Naukova Dumka, Kiev (1983).
- 2. G. E. Hardimann, US Patent No. 3,506,647; Chem. Abstr., 73, 3945 (1970).
- 3. G. E. Hardimann, US Patent No. 3,551,445; Chem. Abstr., 74, 141898 (1971).
- 4. Sandos Ltd., Netherlands Patent No. 6,607,814; Chem. Abstr., 67, 43829 (1967).

T. G. Shevchenko Kiev State University. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, p. 705, May, 1985. Original article submitted June 25, 1984; after revision, October 23, 1984.